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ABSTRACT

A randomly fluctuating longitudinal pressure gradient of a non-Gaussian
form and arbitrary power spectrum will cause a randomly fluctuating velocity
to be superimposed on the steady incompressible flow in a channel. Pressure-
gradient and velocity correlations, frequency response functions and system
power loss are calculated. Numerical random pressure gradient signals
were generated using Fourier series expansion, with random picking of dis-
crete Fourier spectrum values and a nonlinear no memory transformation.
Numerical values of the velocity signal were then calculated by linear trans-
formation of the pressure-gradient signal. Pressure-gradient and velocity
signals were compared for difference in amplitude, frequency, time lag, and
probability distribution functions.

INTRODUCTION

The study of random fluctuations in engineering system's is receiving
increasing attention. This is because practically all physical systems have
some randomness which at times can cause the system behavior to be dras-
tically different from the steady case.

The analysis of these stochastic problems is difficult, and usually only
certain statistically averaged properties are obtained, such as the auto-
correlation, which give only part of the information concerning the system.
With the development of the high speed electronic computor it has become
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feasible to study the random behavior of systems numerically, especially
since the development of the fast Fourier transform algorithm which is a
numerical method of rapidly taking Fourier transforms. This numerical
calculation with random signals allows any statistical property of the signal
to be calculated e. g. probability distribution function, by the appropriate
numerical techniques.

The present analysis describes the effect of a randomly fluctuating
pressure gradient on the flow of an incompressible fluid in a channel (fig. 1)
both analytically and numerically. A pressure-gradient signal having an
arbitrarily specified probability distribution and power spectrum is gener-
ated numerically. From this the velocity signal can be calculated. The
velocity signal can then be analyzed for its probability distribution function,
power spectrum and any other characteristic of interest. Analytical results
are computed where possible and the numerical and analytical results are
compared.

In a previous analysis (ref. 1) this same flow problem was studied for
the case where the pressure gradient fluctuations were restricted to 2
Gaussian (normal) probability distribution. Since the fluid velocity was
linearly related to the pressure gradient, the velocity fluctuations would also
be normally distributed. Therefore all the velocity characteristics would be
given by the autocorrelation function of the velocity. However, for the non-
Gaussian pressure gradient the velocity distribution is also non-Gaussian
and cannot be characterized by the autocorrelation function alone. By use of
a numerical method however the velocity signal is generated numerically and
all its statistical characteristics can be found by the appropriate statistical
analysis of the signal.

Tien and Lienhard studied a similar problem for pipe flow (ref. 2) and
included the effect of turbulent eddy diffusivity in Ref. 3. However only the
autocorrelation results were given. This would not be sufficient to fully
characterize a non-Gaussian system.

As shown in Ref. 1 it is possible to generate numerically & Gaussian
signal with a given power spectrum. Then by a nonlinear, no memory trans-
formation this initial signal can be transformed into a pressure gradient sig-
nal with the desired non-Gaussian probability distributions and assocciated




power spectrum. From this, through a linear transformation the velocity
signal can be found and analyzed for its statistical properties. This process
is outlined in Fig. 2.

ANALYSIS

In the present case we are interested in generating a random pressure -
gradient signal with a non-Gaussian probability distribution. To do so we
must first generate a Gaussian signal then transform it to the desired signal.
The method used is illustrated in Fig. 2. A Gaussian signal wi(t) with a
specified spectrum is subjected to a suitable nonlinear no memory transfor-

probability density function p_ . This transformation can be written as
y = g(w). We can relate the distribution functions of v and w by the well

g(w) w (1)
/ D, & f Py &
g(-=) =e0

The pdwer spectrum of the generated signal Sww(w) must be specified
so that the nonlinear transformation, y = g(w), will have the desired power
spectrum SW

The autocorrelation of the generated w signal, which is the Fourier
transform of the power spectrum, is obtained in terms of the desired pressure-
gradient signal autocorrelation as follows.

known relation

Generated Signal Autocorrelation

We can write the pressure-gradient signal autocorrelation as follows
(ref. 4, pg. 51)

00
R,},.y = E [Vl(tl)')/z(tz)j] "/ ‘/;(Wl)g(wz)pwlwz dwjg dwg (2)

where Py, is the normal bivariate distribution given by
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Porw is the normalized autocorrelation RWW/O’?”, and oir is the variance.

It has been shown in Ref. 4 (p. 52) that the Ryy can be written as an
algebraic function of Py Then for a known Gaussian signal, Dy o and known
transformation, y = g(w); the autocorrelation p W of the input Gaussian
signal that after the nonlinear transformation to the pressure signal, will have
the desired autocorrelation RW can be calculated by iteration.

A simpler method of calculating Porw is given in Ref. 5 for the case
where the nonlinear transformation between y and w is given in the

specified form,
\4
1 -u“2/2<7‘?;7012
Y = g(W) = —— e du (4>
Kowoz 2T 0
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The K and « are adjustable parameters that allow a wide variety of
relationships between ¥y and w to be approximated.

The plot of y versus w given by Eq. (4) are plotted in Fig. 3.
Although all values of w are possible the values of y are restricted between
+0.5/K. The value of K thus determines the cutoff amplitude of . For
a = 0 .all values of w transform to +0.5/K giving a rectangular wave for v.
As a becomes large, Eq. (4) reduces to K"}(‘—»w/(n/?gr aoy,) so that yow,

From Eqgs. (1) and (4) we can write the distribution of y as

2 -2\6. 2
D, e wo(l-a )20’W

rd (5)
K




Eq. (5) can be evaluated by finding w for a specified value of » using
Eq. (4). Then py/K can be evaluated from Eq. (6). The plot of py/K
versus YK is shown in Fig. 4. Significantly different probability distributions
p. can be obtained for different values of a and K.

¥ y =g(w), given by Eq. (4), is substituted into Eq. (2), then as shown
in Ref. 5, R‘)")/ is given by

- p.
R - 1 sin 1 wWwW (@
YY ) 9
21K 1+ ' _
This can be evaluated at 7= 0 to give
R_(1=0)=—2; where 9=sin'1< 1 > (7)
YY 9 9
27K 1+
We can now write
1/ P
pw=_1.sin1< WW> (8)
0 1+ ozz
which can be inverted to
_ 2y .
Py = (1+ @) sin [epw] (9)

This gives the needed Gaussian autocorrelation Pyw SO that the nonlinear
transformation given by Eq. (4) will give the désired pressure gradient
autocorrelation Py

Pressure Gradient Autocorrelation

A common form of random fluctuation is called a stationary Gaussian
Markoff Process. This gives an exponential form of the pressure gradient
autocorrelation (ref. 6, pg. 215).

_ 2 -AlT| _ 2 7|
y = oye = aye (10)
where the rate of fluctuation A and the time span T have been nondimen-

sionalized by

2 = _913 cr= IV (11)
1% dz

where v is the fluid kinematic viscosity and d is the distance across the

channel. The A is a dimensionless measure of the fluctuation rate. It can
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also be considered the inverse of the dimensionless characteristic decay time
of the autocorrelation. The larger the M value, the greater the fluctuation
rate of the pressure gradient signal. The fluctuation rate can be character-
ized by the number of crossings of the o value of the signal per unit time.
The quantity o% is the mean square value of the pressure fluctuations U?ﬁ: .
It also can be considered the integrated power spectrum of the pressure signal

+OO
0) = o2 = 19
R, (1=0) = 07 = f S, df (12)

€

since

where S ¥ is the power épectrum and f is the frequency. The larger the {ri
value, the larger the magnitude of the pressure fluctuations.

The autocorrelation of the generated signal from Eq. (9) for the case of
the stationary markoff pressure gradient signal becomes

b = (1+ @) sin [9 e‘”ﬂ] (13)

The dimensionless autocorrelations Porw and P, are shown in Fig. 5.
Since the power spectrum S’W is the Fourier transform of the auto-
correlation, Ry_}/,J we can write the dimensionless power spectrum of the pres-

sure gradient as g
_ YY . 22 (14)

o -
RO 2,2

where w is the angular Fourier frequency, 27f. The generated signal's
dimensionless power spectrum is given by
+OO
= (1+ az) sin E)e'xlT ']e'wT dr (15)
-0
Expanding sin Ge"M’r ‘] in a series gives, for the present pressure gradient
markoff process case, '

q n! : 2, .2
n=1,3,5 [(m) * w}

Generation of a Gaussian Random Signal by Model Sampling

The Gaussian random signal w(t) can be obtained as shown in Ref. 1 by
writing the signal as an inverse discrete Fourier Transform, w won’ where n




are integer values. It follows that the discrete Fourier spectra can be con-
sidered a Gaussian random variable with a zero mean and a variance that
can be related to the power spectrum. We can use a random sampling pro-
cedure to pick the discrete Fourier spectrum values from the appropriate
distribution. Then by use of ""fast Fourier transforms'' we can obtain the
signal values at discrete points. This detailed procedure is as follows.

As shown in Ref. 1 the power spectrum, SW of a signal w which has
a Fourier spectrum w w can be written as e

o B [bard] Ao ba) ¢ 0

Where WZ) is the complex conjugate of the Fourier spectrum. The w R

W?

and w w] 2re the real and imaginary components of the Fourier spectrum.
The term (.) denotes ensemble averages. Thus the power spectrum can be
related to the average of the squares of the Fourier spectrum of the random
signal.

Discrete Fourier transform. - When a signal is to be analyzed on a
digital computer it is the discrete Fourier spectrum rather than the con-
tinuous spectrum that must be considered. I the Fourier spectrum w

is band limited so that W, 0 for > fM we can write (ref. 7, pg. 152)

= —inmf/fp -1 )
W, = C,e ;fp>2fM;_.§._<f<_5

o
b
(=]

R

n=-
where
+f
1 P indat/t
Cn e Ww e
f
IV

df (19)

Since W, = 0 for £ > fM we can see that, using F—l( ) to denote inverse

-1 n
cnfp F IENOJ:I Wn <t £ > (20)
p

transforms, then




Thus knowing w at discrete values of t allows w w to be evaluated from
Eqgs. (18) and (20). Then by taking the inverse continuous Fourier transform
of w, we obtain w at all times. Since we assumed t = n/fp = nAt we can
see that

At =L < 1_ (21)
f b 2fM
which is sometimes called the Nyquist interval.
If we take N+ 1 samples of W, Wwe can write Eq. (18) as
+N/2
W, (kA0) :?1. Z W o~ 2imk/N (22)
p n=-N/2
Since fp = 1/At = N/Tp we can write the above as
<’:v_21£> 4 +1\§2 W o-i2mk/N (23)
Tp N =-N/2

As shown in Ref. 1, this can be considered a discrete Fourier transform. The
inverse discrete Fourier transform can then be written as
N/2

w - | <%c_gl§> i2rkn/N (24)
K=-N/2 * P

So that Eqs. (23) and (24) form a discrete Fourier transform pair that are
approximations to the continuous Fourier transform pair.
Fast Fourier transforms. - A numerical method has been developed,

called the fast Fourier transform (ref. 8), for evaluating discrete Fourier
transforms in a very efficient manner on a digital computer. One imple-
mentation readily available is the IBM~scientific subroutine package called
HARM/DHARM. Many others are available.

Model sampling to generate Gaussian signal. - We can expand w Wk
in Eq. (24) into real and imaginary parts. Since w isa real function
the imaginary term must be zero and so w w must be an even function

nR
around n =0 while w wp] 1S an odd function around n = 0. Then we can write
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+N/2
1 2mnk . 27mk\ f
W, = — \4 cos -w sin (25)
k T ( wnk N wnl N /
P p=-N/2
It has been shown in Ref. 1 that for a Gaussian random process w wnk
and w n] are normally distributed, independent, random variables with
zero mean and variance given by
2 ~ 2 _ 2
<ank> B <anI> - <an> n+0
2 (26)
W wnI> =0 n=20
Then from Eqs. (17) and (26) we can obtain
4
_g._ (W?On> n+0
T
p
SWW =< <W2 ) @7
w=n27/ Tp wn n=0
T
" p .
We can generate the values of w wnk and w wnl by first writing their
joint Gaussian probability distribution
. 1 1 2 2 @ /
POV onR Wony = 2 €Xp ¢~ 2 (anR wnE (28)
2m <an> 2 <an> ;

Following the procedure in Ref. 1 we can randomly sample values from the
above distribution with the equations

W onR = ( (an\>> (-1n Rr)l/2 cos 27R,

1/2
_ 2 A 1/2 .
W = <2 (an>> (-In Rr) sin 27R,

(29)

where RQ and Rr are two different random numbers picked from a uniform
distribution that is constant between 0 and 1. These values can readily be
generated on a digital computer. Recalling that w wnR is an even function
and w wnl is an odd function, in the particular fast Fourier program used
(HARM/DHARM), we need only find Wonr 2nd w . from n=0 fto N/2.

Then Vo, (N/2)+1, R = Vo, (N/2)-1, R’ etc. Sﬂimilarly Wi (N/2)e1.1 =
"Ww, (N/2)-1,T etc. The value of Ww, 0,1 is equal to zero.
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After finding the values of w w,n we can substitute them into Eq. (25)
and using the fast Fourier transform routine find the values of w,.

The sample mean W and the sample variance W2 are then found from
the Wy values, With this the value of W, can be normalized,

Wl’{ = (Wk -w)/ (Wz)l/ 20 Then the distribution and autocorrelation are found
by using available subroutines on the values of W’i{

The example case is carried out using the power spectrum SWW given
by Eq. (16). The normalized signal w' is plotted in Fig. 6 for a 2 wvalue
of 1.

In Fig. 7 the cumulative distribution function of w' obtained numeri-
cally is plotted along with the Gaussian cumulative distribution function with
good agreement. This shows that the w' is normally distributed as expected.

The numerical results for the autocorrelation of the w' signal is shown
in Fig. 5 and compares well with its theoretical result, although the agree-
ment seems to fall off for large time lag 7.

Generation of y signal from w signal. - To transform the w signal
into the pressure gradient signal y we use Eq. (4) which allows us for each
wn(nAt) to calculate a -iynf'(nAt) value for each n from 0 to N. This gives
the pressure gradient signal with the desired probability distribution and
autocorrelation. This signal is normalized to y' and shown in Fig. 6.

Since the normalized pressure gradient signal cannot have any values larger
than (0. 5/oy) we can see this cutoff in Fig. 6. It can be seen from Fig. 4
that the pressure cutoff is at lower values of ' for smaller values of

since the normalizing factor 07/ increases for decreasing «, see Fig. 4, The

cumulative distribution of the ' signal is shown in Fig. 7 where it can be
seen to agree with the analytical result. The autocorrelation of the ' signal
is shown in Fig. 5 and also agrees with the analytical result.

Relation Between Velocity Signal and Pressure Signal

This procedure follows the analysis in Ref. 1. To calculate the fluid
velocity signal from the pressure gradient signal we must first solve the
momentum equation. For viscous incompressible flow between parallel plates
with constant properties in the fully developed flow region (see fig. 1) the
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momentum equation can be written as

2
U _ _lp(T)+ y U (30)

oT o 8Y2
We can let the velocity and the pressure gradient consist of a steady part and

a nonsteady part U = Us + U’t; P= 'Ps;”" P.. Normalizing as follows

to
vpU vpU P
uS:—~ 2S V = - 2t y:X t::.]_/.g. :_.-L
q . d P
d PS d PS d s
we can obtain
2 2
us:_._._...__y—y ;.@X:’}/.g-..a__‘l (31}
2 ot ayz
The solution for v as shown in Ref. 1 is given by
420 t
V= h(6, y)y(t - 6)dd = hit - 8,y)y (6)dd (32)
OO v 6:00
where h is the weighting function given by
h(9) = Z Yy e™ ©) for6 >0 |
m=1,3,5 ‘ [> (33)
h(6) = 0 for 6 <0 |
where M = mn. The Fourier transform of Eq. (32) is given by
Vi =7l {34)
where
o0
Y .
- M S -1¢ (
H = E ——éf———_HR+1HI~,H1e (35)

m=1, 3,5 M™ + iw
and YM = 4 gin My/M. The H is sometimes called the system transfer func-
tion. We can write the real and imaginary parts of H as
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2

Y, M Y ,
H. = .____1\4___; H. = -w __.__ML_, (36)

R 4 271 4 2

M™+w M™+w

m=1,3,5 m=1, 3
2 2 ‘E/E . «

The gain factor of the system function is given by iH’ = R + Hﬁ and the

phase factor of the system function by ¢ = tan” (HI/ HR) The gain and phase
factors are plotted in Fig. 8. As can be seen in the figure, for small values
of angular frequency w the system frequency transfer function approaches the
distortionless limit |H| = ]Hld; ¢q = -wt, togive

+iwtZ
H= [H| e
Then taking inverse Fourier transforms of Eq. (34)
+OO
+iwt
v=H|, v e et o H| pit+t) (37)
27
-0

This shows for very low frequency, w - 0, the velocity signal duplicates the
pressure signal but is a fraction |H|, of the pressure signal amplitude. The
velocity signal lags the pressure signal by a time increment t, We can find
the limiting value of ’tZ as w -0 as 0.0781.

The gain factor decreases in magnitude close to the wall. This shows
that the magnitude of the velocity fluctuations close to the wall is smaller than
near the center of the channel. The percent decrease in the gain factor at the
higher frequencies is larger near the center of the channel so that there will
be relatively more damping of the higher frequency velocity fluctuations near
the center of the channel than near the wall. The phase factors are smaller
near the channel wall than near the center showing that there is a smaller
signal lag of the velocity signal behind the pressure signal closer to the wall.

The cross correlation of the pressure and velocity fluctuations can be
obtained from Eq. (32) as

el

RW(T) = (Y(t)v(t + T)) = J(; h(8,y) <y(t)'y(t + T - 9))d9 .—.L h(@y‘}Ryy(’T - 6)de -
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where R is the time lag. Since the cross spectrum is the Fourier trans-
form of the cross correlation, by using the convolution theorem we can write
= @ 39}
8,,(0) = H@)S, (v) (

We can find the velocity autocorrelation similarly as

RVV(T) =f h(e, Y)R'yv(T + 6)do - (40)
0 _

Then we can write the power spectrum as
- - - 2 : /
Syy(©) = HX@)S () = BH)H(@)S  (©) = [H(@)[7S , («) (41)

The pressure-velocity cross correlation for the present case can be
written using Egs. (10), (33), and (38) as

4 00
) 2.
0,}2,' z ,:YM/(M2 - A)] [e_}w -[ZA/(A + Mz)]e'fM 3’} for T=0
4 m=1, 3,5
Ryv('r)= ‘
0_2 Z YM e)\T/(M2 + >\) for T < 0
Y =1 (42)

. m=l 3,5

In a similar manner we can calculate the velocity autocorrelation
from Eqs. (10), (33), and (40) as

R (7)_02 z Z [M o (M2 -x)] [e'”/mmz)

m13m

—(2A/B+M'2]> " | (49
The normalized power spectrums are plotted in Fig. 9. The pressure gréjﬁiem
spectrum from Eq. (14) for the stationary markoff process can be seen to have
a lower frequency cutoff for lower values of X or slower rates of fluctuations.
The normalized velocity spectrums given by Eq. (41) are also shown and for
the lower values of A are close to the normalized pressure gradient spectrums
and not strongly dependent on distance across the channel. However at the
higher fluctuation rate, or large X, the power spectrum of the velocity sig-
nal have more of the power concentrated at the lower frequency then the power
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spectrum of the pressure gradient signal.
The mean square velocity, (vz), can be obtained from Eq. (43) since

40 $00
<§’2> =R_,(0,y) = f S,y df = / lH(w)lzswwdf (44)

The values of <v2> across the channel for different values of » are shown
in Fig. 10.

Since the gain factor is smaller near the wall (y = 0.1) compared to that
at the centerline (y = 0.5), the mean square velocity is smaller near the wall
as compared to the centerline. The mean square velocity goes to zero at the
wall (fig. 10) as would be expected from the zero wall velocity boundary
condition. The gain factor is greatest at the lower frequency and has a high-
frequency cutoff (cf. fig. 8). Therefore for a given mean square pressure
gradient value the maximum value of <v2 is found when the pressure
gradient spectrum is a delta function at small w. The minimum value of

v2 occurs if the pressure spectrum is a delta function at large value
of w.

Power Dissipation Due to Velocity Fluctuations

It is desirable to know how much additional power must be supplied to the
flow system to maintain the same average flow rate for the fluctuating flow as
compared to the steady flow case. As shown in Ref. 1, the external rate of

work done by the pressure force w_ is equal to the sum of the rate of increase

in kinetic energy Ke and the rate oef dissipation of energy due to internal
friction Weo If we then take the ensemble average, the rate of change of the
kinetic energy term will be zero because the process is stationary. We then
have the external rate of work done by the pressure force w_ equal to the

rate of dissipation of energy due to external friction W,

1
-(ﬁp> = uf <(8U/8Y)2>dy (45)
0

1
where U is the integrated value across the channel, f U dy.
0
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To find the rate of dissipation of energy due to internal friction we can
then write

Wp = - <ﬁp> = - I_IIsPs - (ﬁtpt) =W g (ﬁtpt> (46)
If we let wf’ s be the rate of dissipation due to steady flow, the ratio of
increased dissipation due to the unsteady flow over the steady flow dissipa-
tion can be written as |
400

(W - Wy /g =( UtPt> /TP, = 19R (o) = 12 S, dw (47)

Integrating Eq. (42) over y and substituting the result Eq. (51) give
0
gy -wy Dfw, =962 D 1/MEME ) (48)
, 87 'f,8 ¥4 :
m=1,3,5
This result is shown in Fig. 11 as a function of the fluctuating rate param-
eter A. As X becomes very large, that is, as fluctuations of the pressure
gradient become very rapid, the frictional power loss reduces to the steady
power loss. The frictional power loss increases with smaller values of 2,
that is, with slower fluctuations of the pressure gradient. For a given mean
square pressure gradient the maximum rate of power dissipation that can be
achieved can be seen from Eq. (47) to be when Syy is a delta function at
the maximum value of H which is at small w. The minimum power dissipa-
tion occurs when SW is a delta function at the minimum value of H: i.e. R
w large.

Calculating Velocity Signal From Pressure Signal

We can write the velocity signal as before (eq. (24))
N/2

v .
T
k=-N/2 » P
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From Eq. (34) we can write

v,..=|H Y (
wn nw _n27 wn {50)

n
Tp

The values of Yyn a0 be obtained by taking the fast Fourier transform

of y, which were calculated previously. Then by use of Eq. (50) we can

obtain the values for Voon® The values of v, are then obtained using the

inverse fast Fourier transform. From these values the normalized values

v;l can be found. These are plotted in Fig. 12. When compared to the pres-

sure signal it can be seen there is rounding of the sharp cutoff of the pressure

signal. Fig. 7 shows the cumulative distribution of the velocity signal

which can be seen to be similar in shape to the cumulative distribution of the

pressure signal but tending towards the Gaussian cumulative distribution. The

autocorrelation of the velocity signal is shown in Fig. 13 to agree fairly well

with the theoretical results given by Eq. (43) but diverges somewhat for large

lag times 7.
SUMMARY AND CONCLUSIONS

The effect of imposing a randomly fluctuating pressure gradient with a
non-Gaussian probability distribution and an arbitrary spectrum on a fluid in
a channel causes a randomly fluctuating velocity component to be superimposed
over the steady flow. The mean value of the velocity fluctuation is zero. The
mean square value of the velocity fluctuations which is a measure of the am-
plitude of the velocity fluctuations is highest in the center of the channel and
reduce to zero at the wall. Also the slower the rate of the pressure gradient
fluctuations the greater the amplitude of the velocity fluctuations.

The pumping power loss was increased by the flow fluctuations, the slower
pressure gradient fluctuation rate giving the larger power loss.

The non-Gaussian random pressure gradient signal with a stationary mark-
off power spectrum was obtained numerically by first generating a Gaussian
signal with a specified power spectrum. This was generated by first choosing
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random values of the coefficients of the discrete Fourier spectrum repre-
sentation from a Gaussian distribution whose variance was obtained from the
specified power spectrum. Taking fast Fourier transforms of the discrete
Fourier spectrum gave discrete values of the Gaussian signal. This signal
was then transformed through a nonlinear, no memory, relation to the de-
sired non-Gaussian fluctuating pressure gradient signal. The velocity signal
was obtained by first taking the fast Fourier transform of the pressure gra-
dient signal and multiplying the resulting discrete Fourier spectrum by the
system frequency response function. This gave the discrete velocity Fourier
spectrum which was then fast Fourier transformed to the velocity signal. The
numerical signals were then analyzed to obtain their correlations and frequency
distribution functions.

The normalized velocity signals were close in value to the normalized
pressure gradient signal but had a dimensionless time lag vT/’d2 of about
0.0781 for the lower pressure gradient fluctuation rates (small »). At the
higher rates of fluctuation of the pressure gradient signal (large ) less of
the high frequency fluctuations pressure gradient signal appear in the veloc-
ity signal. More so near the center of the channel rather than near the wall.
Also the time lag of the velocity signal behind the pressure gradient signal is
larger near the center of the channel then near the wall. The velocity signal
tended to overshoot the upper limit of the pressure gradient signal.

The nondimensional cumulative probability distribution for the velocity
signal is very close to the cumulative probability distribution for the pressure
gradient at the low fluctuation rate (small )). However at the higher values
of A the normalized cumulative probability distribution for the velocity
approached the Gaussian cumulative probability distribution.
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APPENDIX - SYMBOLS

complex coefficients

spacing between parallel plates

expected value

frequency

frequency increment, 1/Tp

maximum frequency

Fourier transform, inverse Fourier transform
frequency response function

gain factor

weighting function or impulse response function

unit imaginary number

m7; m'ry

number of samples
pressure gradient
probability distribution function
correlation (x, y)
spectrum

time

period of record
dimensionless time, vT/d2
time between sample

fluid velocity

steady dimensionless velocity, -vpU S/ &p
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transient dimensionless velocity, —VpUt/dzPS

generated Gaussian signal .

coordinate across channel

4 sin My/M

dimensionless coordinate across channel, Y/d

parameter (eq. (4))

constant; sin"1(1/1‘+ oz2)

dimensionless pressure gradient, Pt/ P

parameter given by Eq. (7)

measure of rate of fluctuation of pressure éignal

dimensionless measure of rate of fluctuation of pressure
signal, AdZ /v

kinematic viscosity

normalized autocorrelation Rxx/Rxx(O)

variance

dimensionless time difference, tz - t1

phase factor

normalized power spectrum, S/R(0)

angular frequency, 2nf

sample average

ensemble average

complex conjugate

normalized variable
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Subscripts:

F fundamental frequency or lowest frequency, 1/”I‘p
H related to frequency response function

1 imaginary

R real

S steady component

t fluctuating component

related to pressure signal

W Fourier spectrum
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Figure 1. - Parallel plate channel flow model.
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Figure 2. - Flow chart of numerical analysis.
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Figure 3. - Nonlinear transformation of generated signal w to pressure gradient signal .
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Figure 6. - Normalized generated Gaussian signal and pressure gradient
signal.
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Figure 7. - Normalized cumulative distributions.
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Figure 9. - Normalized power spectrums.
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Figure 10. - Normalized mean square fluctuating velocity com-
ponent across channel.
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Figure 11. - Percentage increase in power dissipation ratio due to
flow fluctuations.
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Figure 12. - Normalized pressure gradient and velocity signal.
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Figure 13. - Dimensionless autocorrelation of pressure gradient and velocity

signal.
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